Thursday, December 24, 2009

Under Seat Storage

Under seat storage is a black-hole, smaller items slowly sifting to the bottom where they will never be seen. A shallow lift-out composite box on runners is a very simple and practical solution. I installed two of these at the start of the season and I am very well pleased.

Note the 75-year old container of terminal grease and the roll of gray butyl rubber; The best stuff does NOT come from West Marine. In fact, nothing in the picture came from there.

See also this post on hinges. A big improvement and should have been a part of the original project.

Friday, December 18, 2009

Winter Sailing

rev. 10-14-2013

I'm always a bit confused when I see the winter storage yards of the Chesapeake Bay sprout hundreds and even thousands of sturdy sailing craft, starting the first day temperatures dropped below 60 F.  I sail all year, wouldn't have it any other way, and only once in 25 years of sailing have I placed my boat winter storage. Each season is different, and I wouldn't want to miss any one of them. 

Rev. 7-21-2024

Now I'm sailing my F-24 trimaran. There's no protection from the elements, so the clothing has been taken to the next level. I'm still good to about 35F, below which the lips get a little too cold to call it fun. Above 40F I would rate it as more far comfortable than a 95F summer drifter day. No chill, no sweat, if you get it right. I've accumulated a lot of clothing over the years, in part from ice climbing, but also sailing and skiing. My gear on any given day could be $1000 if I'd paid retail.

  • Wind-proof balaclava with fleece cap over.
  • Ski goggles. They really help keep the entire face warm as soon as it goes below about 45-50F. You'd be wearing sunglasses anyway. Note: avoid 2-lens goggles if it will be raining or a lot of spray. The water can sneak between the two lenses, making it much worse. A single lens with good de-fogging and ventilation is better.
  • Assorted fleece tops with a wind breaker. Sometimes a Goretex climbing parka.
  • Gill Helmsman gloves. They redesigned them about five years ago and the new ones are perfect. Sort of like ski gloves, but with much better flexibility and sailing palms and fingers. I can actually work the boat and even tie some knots with them. Plenty warm and waterproof.
  • Goretex snowboard pants with soccer training pants under.
  • Waterproof socks inside deck shoes. I hate clunky sea boots. 
If it's rough I might switch to a dry suit. I always have a dry suit on board in the winter, just in case there is some need to take a swim. You never know when something could tangle on a rope.
 

I still pick fair weather days in the winter. Why work that hard when it's cold?

I also fitted the cabin with a heater that is vented and has a separate flue. I'll post on that, but the full article was in Good Old boat a few years ago.



December 17, 2009

Yesterday I sailed from Deale to Annapolis and back in great 20-knot reaching conditions. I wouldn’t call it an adventure—nothing went wrong. I had spent the night on the boat, to get an early start; still combined with a short stop at the city dock, it took all of the brief winter daylight. On the water, I saw only four boats: some rockfishing not far from Deale, a lone sailing dingy near the South River, and a workboat tending buoys off Ego Alley (the local name for the narrow town wharf in Annapolis).  Oddly, the harbor area seemed nearly as busy as a summer day—Christmas shoppers bustled from store to store and live-aboard yachts in winter storage fill the bulkhead and transient slips between mid-November in mid-April.

Why would I sail to Annapolis for the day, in December? Well, some friends of mine, a Precision Yachts group, are planning a rendezvous in the summer and I needed to scope things out for them. From the water seemed best, though not nearly as prudent as simply driving there. However, it had its advantages: the Harbormaster was not busy and had plenty of time to speak with me; parking was easy - I was able to use the loading-only area for no charge since there was no boat traffic; because of the holiday shopping, parking a car was nearly impossible and dozens circled like vultures, ready to swoop on any open space.

 Hundreds of migratory birds. Scoters take over the coves in flocks of a hundred or so, taking off like many black bullets when approached within a few hundred yards.  Quiet, except for the wind. No crab pots to dodge, only the pound nets, but they are easy to see.

It was a nice day, nearly warm once you get used to it (high of 39F), but the temperature dropped like a rock as the sun faded. Thank goodness for a generous dodger. We are to get 20 inches of snow over the next 2 days.

There's no question that a bright spring day, a warm summer's day, and the dependable winds of fall make for better sailing than a nasty day mid-January.  Well, maybe a different sort of day. I'm not a big fan of drifting in hundred degree soup. Some say that they would rather put sailing away for a season to pursue other interests, like skiing.  I can buy that, though I do both.  Some lament that they have projects to take care of. Baloney. The temperatures below 50° F neither paint stripper nor epoxy nor paint nor caulking function properly, or least not without undue preparation and aggravation.  What we're really doing is procrastinating on those projects until spring when we will actually do them. Then, of course, we end up working around marginal weather, sometimes half ruining a job triggering great fruustration, and missing fine early season sailing, when we are at our most anxious to get on the water.  I always pull my boat for project work in the summer at some point, and seldom have I been out of the water for more than two weeks. I pick dependable weather and work fast.  For those of you from truly cold climates where the water turns hard for months, yeah, I'd haul out too.

Disclaimer. As always, my experiences are from the Chesapeake Bay area in catamarans with outboard engines. I make no effort to speak to a broader audience.
  
Weather. Yes, it is colder and in general windier. However, there are no thunderstorms, so there is less unforeseen wild weather; you can know what’s coming. Do watch for icing conditions; it can be a bugger to lower the main or furl the jib. Watch the main track and the jib furler line for ice. Using Sailcote or other lubes reduces the ability of ice to stick.

Choose an Ice-Free Harbor. While there is no such thing during a tough winter, in most years there isn't much sustained cold, the Bay is brackish, and some harbors ice before others. Fore example, in Deale there are 2 creeks: the north branch gets good tidal flow because the creek is long, and seldom freezes while the southern fork goes only a very short distance, experiences less tidal flow, and freezes somewhat sooner, thicker, and longer. A flight over the area in mid-winter is very telling. On approach to BWI you can often see a sharp line somewhere around Annapolis, separating frequently-frozen harbors from the generally ice-free harbors further south. The very worst marinas are those simply carved out of the side of the Bay with no through-circulation.

Ice Bubbler or Ice Melter. While these won't free the channel of ice, many use them to keep the area around their boat ice-free. Sometimes it is the difference between getting to the channel or not.

Bubblers are nothing more than an electric motor and propeller that pulls warmer water from the channel depths and pushes it up, under your slip. Always position the bubbler at the channel end of the slip and angle it (by varying the rope attachments per the instructions) so that it hangs at ~ 45 degree angle when energized (it will move) and thus pumps water through the slip. Make certain it cannot strike bottom if the water level drops. While they can run very near the surface, even breaking the surface, without damage, they throw a lot of spray that can cause substantial ice to form on nearby surfaces. Use a thermostat that only activates it when temperatures are below freezing; this saves power and a lot of wear on the unit and the prop. Check them every few weeks; the prop can pick up plastic bags and the like. Take it out by March 1st and save on corrosion.

I use mine only about one winter in five; generally the conditions don't warrant it. I'm not certain that in 25 years that I would have actually seen any damage without it; it's more of a convenience. I've never so much as scuffed the boot-top. Because of the salt, the Bay ice generally freezes a little mushy. However, I am in a very well protected marina protected from wave action and flows. More exposed locations can be an issue, if slabs of ice can drift through. These are a poor choice for winter storage, or perhaps for mooring in general, what with nor'easters and hurricanes. I witnessed too many "new" marinas destroyed during Isabel.

Automatic Bilge Pumps Must be Freeze-Proof. In boats with an enclosed and protected cabin the bilge and the bilge pump itself may not freeze on the Chesapeake Bay, because they lie below the waterline and it just is not that cold. However, the discharge hose will freeze unless care is taken to eliminate all low spots and loops in the hose. The hose should be as short as practical and the plumbing cannot incorporate a check valve. These common and easily avoided causes of winter sinking took three boats in just one winter, out of only 8 in our marina; two were derelicts, and one a nice boat. While all three hit the mud before they went very under and were easily floated, the damage was substantial.

Engine Exhaust and Bilge Pump Outlets Must be Well Above the Waterline. When loaded up with snow a boat can easily sink 2-4 inches below the normal load line--remember 2010? Additionally, the Bay is less salty in the winter, causing boats to ride as much as 1-2 inches below their summer lines. Thus, all open discharges should be at least 8 inches above the water line. Several winters ago a power boat in my marina went down because the exhaust ports were pushed under by snow load, there was a small leak in the piping, and the bilge pump failed (a loop in the discharge line allowed it to freeze, the pump running continuously but to no effect).

Ice Floes in Mid-Bay. It is very rare to see them; certainly not on days when you can get out. However, faced with even the thinest layer of ice or flows, I return home for fear of prop damage; even thin ice will be pressed under by the forward motion of the boat and into the prop, which is not made for chopping.

Smaller Sails. Some years I switch to a self-tacking jib, down from a 150% genoa. It is generally windier in the winter and I don't press as hard either. Spray is cold and I reef earlier in the winter.


Winterizing the Boat.

If I were hauling my boat out for extended storage, no doubt I would do a bit more; my winter checklist is brief reflecting the fact that the boat will not be alone for more than a few weeks.
*    Pump out the potable water tank. Vacuum out the remains with a shop vac.
*    Add a shut-off valve and tee just down stream of the tank and upstream of the pressure pump. Add a second valve on the tee's side branch and a length of 1/2-inch ID hose. Suck a 30% propylene glycol antifreeze mixture into all of the lines using the pressure pump, opening the taps one at a time (hot and cold) and letting them run; the clear water goes down the drain until it's as pink as the feed (you can recycle some of this by boosting it with with concentrate). When finished, remove the suction hose from the antifreeze container and blow out the lines with the pump by letting it run dry for just 20 seconds per tap (the glycol lubricates the pump, so it will not be damaged in a minute). If you have a tank water heater you should drain it and bypass. I have an instant heater and the above works well.
*    Don't leave the glycol in the system longer than needed. Don't winterize until consistent light frost and break  winterization as soon as the frost leaves. Glycol is less inclined to go biologically active if it's only in the boat when it's cold. However, glycol is biodegradable and can turn into a nasty soup of bacteria and yeast if left in place in warm weather.
*    Don't winterize with weak glycol.  Not only is freezing possible, but a nasty water system is a common result. If the glycol is stronger than 25% bacteria and yeast cannot grow; if it is less than 25% they thrive, feeding on the glycol like sugar.
*    Be careful which glycol you use. Neoprene and nylon don't like PG. Best to leave nylon strainers off to drain. PG in potable systems, of course, but black water and engines  can be EG. Note that glycol for non-potable systems can be either propylene glycol (the pink stuff) or ethylene glycol (ordinary antifreeze) because both are essentially non-toxic to fish and to the sewage treatment plant.
*    Pump out the holding tank.
*    Pull the top off the head pump mechanism, lubricate the piston, and pour glycol into the chamber. 
*    Remove the inlet hose from the head and hold it above the water line. Open the sea cock and pour enough glycol in the hose for it to back flow out the sea cock. Close the sea cock.  Replace the hose on the head inlet. Alternatively, install valves so that you can simply suck glycol into the head. Do remember that pouring glycol into the bowl does not winterize the intake side.
*    Flush the head with a 15-20% glycol mixture until March. Place a gallon jug in the head compartment labeled “for flushing only" filled with this glycol mixture.  This will keep the holding hank, discharge side of the pump and the bowl freeze-proof.
*    Keep the gasoline tank full. Actually, this is my practice all year long to reduce moisture absorption into the e-10 gasoline and to prevent separation, all the more important the winter, because e-10 separation is primarily triggered by low temperatures. See the EPA document to this effect
(http://www.epa.gov/oms/regs/fuels/rfg/waterphs.pdf). Alternatively, consider a silca gel vent filter.
*    Engines. All that is required for an outboard that will be used every few weeks is to tip it up.  The engine will drain, so antifreeze is not required. No fuel additives are required since you will be burning through gasoline just like you do in the summer. There is no need to run the engine out of fuel, or to fog the cylinders as many suggest.  In fact, simply running the engine out of fuel is probably the worst thing you can do; that will leave the carburetor partially empty and what remains will certainly evaporate and turn into gum.  The carburetor should either be left full (as you do with your automobile), or drained completely by pulling the drain plug. There is no need to disconnect the fuel line, though closing a valve might be prudent. This is been my practice for 25 years and I've never had a problem.  The only carburetors I've ever had to rebuild were those on secondhand engines that other people had run dry religiously after use.  I wonder if the practice is an urban legend started by repairmen? There is no logic.
*    Engines, starting. Expect to allow a longer warm-up. Manual choke is nice.
*    Ropes.  If you are a frostbiter or truly intend on sailing in bitter cold weather, treat all of your running rigging with Rope-proof by Nikwax. It's a water repellent and anti-freeze treatment that is used by ice climbers to prevent their climbing ropes from turning into frozen sticks while climbing frozen waterfalls (I use this on my ice climbing ropes and it is marvelously effective).  It does make the rope just a bit more slippery until the surface coating wears off, but after that it's simply leaves the rope a bit more flexible and a bit less likely to absorb water.  The treatment lasts one season and will need to be redone each year.  I find it is adequate to treat only the sheets and traveler line.  However, if my intention was to sail in extreme winter conditions I would treat everything.  The instructions are on the bottle. Please read this on washing lines.
*     Storm Windows. It is simple to replace most screens with a piece of 1/8-inch acrylic or Lexan cut to fit. They add some warmth and over my bunk keeps the window frame from dripping condensation at night.
*    Window covers help too. Window Covers 
*    Cover your tender, if stored on davits. The combination of snowfall and ice blocking the drains can make it very heavy. A slippery cover material that can shed snow, rigged as a peaked tent, is best. Additionally, even the most leak-free tender can be expected to lose pressure in the cold. If you are not going to check the inflation of the tender every few weeks, then it should be removed from the
davits. Trice it up with lines cris-crossed underneath.
*   Deep Snow. 30 inches of heavy snow changes all of the run-off patterns, the Winter of 2010 serving as example. The fuel fill may see standing water, not just rain. Cockpit lockers that are normally exposed only to splash may be in standing water, after the cockpit drains plug with ice. Since the deck will not warm with the sun, condensation will be worse. Some extra visits are worth the time. Don't forget the collapsible plastic shovel!
*   Melting Ice. The gentle application of warm water is one of the more versatile aids to melting ice from frozen drains and stuck lockers; much better than chipping or forcing. Don't boil the water and stay away from Strataglass (it will distort), acrylic (crack), and regular glass (shatter). Easy does it and no warmer than a hot shower.
*   Trice-up the tender. The snow loads can really wreck havoc on inflatable tenders. All Triced-Up. Yup, I repeated this one, but I've seen quite a few trashed tenders.


Winterizing the Sailor.

Frost biters: I'm not talking to you; it's the territory of wetsuits and dry-suits and does not relate to cruisers, for the most part. I used to do that, I remmber it was tough on a windy day, and that it teaches you to keep the boat right side up.

I see an odd mix of sweatshirts, ski jackets, jeans, and foul weather gear on the Bay in the fall and winter. Most of it is not terribly appropriate.  Amazing. People spend $100,000 on a first-class sailing boat, and the only thing they know about foul weather gear is to buy raincoats from West Marine. Unless it's blowing so hard that there is spray in the air or it is actively raining, conventional foul weather gear makes very little sense, and few people choose the sail in those conditions anyway. The best gear for ordinary sailing conditions in the winter is often mountaineering gear, which is based around windproof soft shells and fleece. Go to REI instead of West Marine.
*    Windblocker fleece (Polarteck 2000). Although this material looks like ordinary fleece, is nearly waterproof and completely windproof. Only the seams leak because it is not possible to seal them.  There are other windproof softshell materials; all of these work very well. A fleece pull-over goes under the Windblocker fleece, as needed.
*    Under layers.  More fleece.  Cotton really has no place outdoors in the winter with one possible exception; cotton turtlenecks.  Yes, a high-tech undershirt would provide better moisture management be a bit more comfortable… but they stink. If I'm cruising overnight or multiple lights, a shower is not the cards; the water system has been winterized.  The last thing I need--or my guests need--is for me to wear a polyester undershirt.
*    Feet. Sea boots are fine if you have a wet boat. Mine has a very dry ride so I'm perfectly happy with deck shoes and fleece socks. Sea boots are an essential if you are taking the dingy to a beach.
*    Hands. I've never found a pair of winter sailing gloves that I liked. Most are too skiff, the rest are not warm.  I like mountaineering gloves designed for ice climbing, which are breathlessly expensive.  However, they typically have full leather palms, Gore-Tex linings, and are designed for holding lines and handles. They are also designed with thin inner gloves that can be left on when doing something fiddly. I replace these with thin leather faced gloves; this is the best solution for ice climbing and I have found it to work very well on the boat. Pick your gloves as carefully as you would fit shoes; they are your link to the boat (for climbers they are their link to the cliff, so they take this very seriously!). Alternatively, I often use Atlas-fit insulated gloves; they have superior grip and are great for working with wet lines.  They are not water resistant, except for the palms, but they dry fast. They are cheap and available at commercial fishing supply houses. (http://www.shop.kartcollc.com/product.sc?productId=483) I got mine at SeaGear in Cape May, but they stopped carrying them. Often I use them only for handling lines, then switch to something dry.
*    Hand warmers work very well inside ski-type gloves, for a good 8 hours. They do not work well inside knit gloves or Atlas-fit type gloves; the heat dissipates too rapidly and the excessive oxygen supply causes them to burn out too quickly.
*    Head.  Ski goggles and a Powerstretch fleece balaclava, perhaps topped with a fleece cap. Few sailors have realized that ski goggles and make excellent sunglasses as soon as the temperature drops below about 45°.  They are not just for the Southern oceans.  They also contribute much to warmth; they help keep the whole face warm by reducing the amount of surface area exposed to the wind and reducing the distance that warm blood needs to flow. They will help keep your nose warm, as odd as that seems. When I see a sailor without this arrangement, I assume they enjoy a cold nose. Weird.
*  Learn to work with gloves on.  I hear all the time, the "I just can't work with gloves on." They have not tried to learn. There should be VERY FEW tasks on deck that require bare fingers. Do you see Alaskan fisherman working bare handed? If there is a common task that gives you trouble, either modify the task or learn a better way to do it. Practice. Put lanyards on snap shackles. I ice climb and have learned to tie knots and clip carabiners with double mittens. Easy, after learning the ricks.
*    Legs.  I see either jeans, or jeans with longjohns under them.  Silly.  Your legs should have the same basic insulating layers that your upper body has; a softshell and thin fleece pants under that.  An advantage of wearing fleece pants under a softshell is that in the cabin or on the drive home, if you strip off the shell you are still well-dressed; no changing of clothes. Bibs are better than waist-length pants, for both soft shells and more conventional foul weather gear. The only times I wear longjohns is when it is damn cold, perhaps zero to single digits. This is the sort of clothing that a climber wears for an active day of amounts in sub-freezing or even sub-zero temperatues.  This is the sort of clothing I find comfortable for all day sailing, in the wind, at low temperatures.  I will be just as comfortable as I would be sitting in the cabin. Clothing needs to be selected with just as much care as sailing gear for the boat.
*  Always a spare set of clothes on-board. Extra hats and gloves, too.

Engine Starting. Some are dependable; I loved my old Nissan 18 hp 2-stroke. Some--my current pair of Yamaha 9.9 4-strokes--can get cranky in the cold. Pumping the throttle gently can help, as it works the accelerator pump. Ether is also good and there is no reason to be shy about 1 or 2 squirts in the winter; it's better than grinding and grinding. Certainly expect to let them run for 10 minutes before trying to put them in gear. I generally have to leave them on fast idle for 5 minutes of that period. Check for water flow. Between the greater air density and e-10 gasoline, they tend to run lean in the cold. Certainly running the engines for 15 minutes every few weeks though the winter should be good for them.

Cabin Heat. I added a Dixon P-9000 vented cabin heater this season, and I’m quite happy with it. It seems to be equivalent to 2 x 1500 watt electric space heaters. There is no odor and the monoxide detector has never chirped. A central heating system would be much better; the heat doesn't really reach the sleeping cabins and the head compartment is like ice. However, the sleeping cabins are quite comfortable if enough blankets are piled up, and the salon stays a comfortable 70° when it's 32° outside and blowing.  That's enough for me. It does take a full 2 hours to reach that temperature. If my boat were any larger or if I lived aboard, I would chose an installed forced air system.

Amp-hours Reserve Capacity vs Temperature

Power Consumption. Because battery voltage is reduced in the cold, you need to keep an eye on this and know the minimum voltage that will start the engine. Solar cells will generate less because gray days are common, the sun angle is low, and the day is very short. Because nights are longer you need to keep an eye on how many light are on. Don’t run instruments you don’t need. If the heater requires power during the night, allow for that. Can you hand start the engine? Do you have ether, just in case? Pull-starting an engine with ether is much easier. The adjacent table illustrates that of the 100% capacity available at 70F is only 75% is available at 20F. Also note that battery voltage drops below the listed values by about 0.075 volts for each 10F below 70F, so at 20F you may only have about 12.3 volts at full charge. With just a little draw-down, this may not be enough for some electronics; in my experience the autopilot goes first.

Slider Weatherstripping. This is PDQ 32-specific, so the rest of you can skip on ahead to the next topic.

When the heat is running a substantial portion rises up and escapes through the gap between the slider in the cabin roof.  I slit three bath towels length wise and sewed them up into long hot dogs. These fit nicely in the gap between the slider in the cabin roof and increase the temperature in the cabin by about 10° F. Do be careful not to open the slider while they are in place; they could be drawn back into the mechanism and cause a jam.
 
I've found that draping huge beach towel over the cabin door helps too.  It leaks a bit in the wind. This hangs from a pair of pad eyes that are used to hang mosquito netting in the summer.

Wet Suit. Keep one on board in the winter.  You never know when you might have to dive to clear a line or such.  A standard suit will do for water temperatures into the 40s, as long as you're quick about it.  Below that, I would rather not give advice.  You need to pay attention and be quick about it.  Clearly, it is not prudent to go into cold water alone, though I've done it more than once.

Jacklines and Harness. A definite safety essential in the winter. There can be no exceptions to wearing a harness in open water when single handing in the winter. The deck can be absolutely treacherous when covered with frost or a glaze of ice; do not underestimate the danger. At least realize that if you fall off, you're a dead man. Perhaps you're okay with that. Perhaps I've done enough mountaineering to become all too comfortable with that.

Sailing Hardware. I've never had any real trouble with pulleys or cleats or winches.  I have noticed the clam cleats are completely unreliable and icy conditions must be replaced with either horn cleats or cam cleats.

Roller Furling Jibs. In breezy sub-freezing conditions spray will freeze on the front 2/3rds of the boat, the worst of it at the bow. While you may have no trouble setting the jib (the drum is empty and the line still dry from sitting in harbor), after sailing for a few hours the drum will jam up completely with ice and the luff groove will be full of ice as well; there will be no simple way, or no way short of taking a scotch reef, to douse the jib. Keep a watchful eye on the mast grove and treat the furling line with Nikwax can prevent this.

Strength of Materials and Brittleness. Polyester, arimid, nylon, and high-tech polyethylene (Spectra, Vectran, Demyna) are not affected by low temperatures. This has been proven in the lab, in theory, and by mountain climbers, in practice. However, sail cloth can be a bit more prone to tearing it stepped on; it seems that the resin does get stiffer in the cold and that is responsible. Also, PVC moldings become more brittle, so be careful around small latches and the like.  Take a little easier on sump pump handles, dodger windows (do not roll them below 55F or they may crack, and even don't un-zip them below 45F (yup, I've broken a few and dodgers are expensive), and PVC plumbing. Clear windows in sails are also vulnerable below 50F--not when sailing, but when folding or if someone steps or falls on the sail bag--so make certain the window is not folded.

Ice Buoys. Some private markers are pulled for the winter. Some Coast Guard aids to navigation--particularly in the upper Delaware Bay, upper Chesapeake Bay, and Tangier Sound--are replaced by special ice buoys during severe winters.  They are little bit smaller, and all of them--red, green, and black--resemble nun-buoys more than other types.  They are designed to withstand the pressures of ice and to resist being pulled off station. The light is designed to withstand the vibration without the filament breaking.  In reality, if ice buoys have been deployed to a certain area, you probably don't want to be there.  However, I have seen in the spring when they had not yet been replaced.

Propeller Damage. If the ice in the harbor or on the Bay is thick enough to damage the hull I can only hope the prudent mariner will stay at the dock. However, in very thin ice or broken ice there is a hidden danger; as the hull moves through the ice, even if the propeller is far below the surface, sheets of broken ice will find themselves pressed far under and will be sucked into the prop. You can hear them being chopped to bits. I think it is unlikely anything large enough to do harm can be sucked into the engine's cooling system; the bits should be large and will slide off. However, I'm not so certain the propeller and hub are safe from harm. I have always gone very slowly, no matter how little ice was present, and after a few experiences I now generally avoid any ice for this reason. I have never experienced damage, but I feel sure that it is tempting fate and that high RPMs would be a mistake.Would I feel comfortable entering a harbor with very thin ice? Yes, proceeding slowly, if it were very thin, certainly less than 1/4-inch. There is also the very real chance of becoming stuck, creating a very hazardous situation. It is very surprising how much even thin ice increases resistance. Be extremely vigilant.

Shovels and Brooms. A broom just doesn't get it done when it's deep. A plastic shovel--one of the small folding ones sold for the trunk of the car--works for me. It seems OK on gel-coat, if used cautiously. As for paint, don't do it.


Yes, I've frozen a glove to the mast and I've slid all over the place on frost. Honestly, the biggest challenge is having enough books and movies to get through the long nights. Perhaps you'll never sail the great southern ocean or even want to; you have more sense than that. Still, you can pretend that you have and make Water Mitty proud. It will be a miniature adventure, will give a new perspective on the Bay, and perhaps a breed a new found respect for the watermen to replace the widely-held animosity generated while dodging crab pots in summer.

Sunday, November 29, 2009

Under-bunk Storage on the PDQ 32

rev. 12-12-2009, rev. 7-21-2024

The PDQ 32 was made in 2 basic versions: the Classic (my boat) which is powered by twin 9.9 hp outboards, and the LRC (long range cruiser) which had twin inboard sail drives. The LRCs have storage in the cockpit where the Classics have motor wells. The Classics have huge engine compartments under the bunks which are difficult to access. They represent nearly as much storage volume as found throughout the rest of the boat, and it seems a shame for it to go unused. We don't miss it over-nighting, but when out for weeks at a time, we need more luggage space.

The way our boat came, the "hole" was covered by one large unfinished sheet of plywood. You worked your fingers under the wood, awkwardly levered the mess over to the side, and deposited the wood on top of the mattress to keep it from coming back on your head. The wood was loose and always trying to slide and bang into something. The gelcoat was scared from it sliding around. More over, if you only needed one small thing, there was a temptation to lift the wood with one had and strenuously prod around in the dark for the desired items. Agony. We only stored item we seldom needed, and dreaded getting them out.

Some owners split the mattress and split the board. Better, but we didn't want to split the mattress and we are thinking about changing to a Select Comfort mattress later. We thought about pulley or lever arraignments - none were simple, and in the end, they weren't needed.

First, we need to add the sliding drawer, perhaps a bit larger than a suitcase. This should easily manage clothes for a week, with outerwear and such stored in other places. There are a few small cabinets and 3 shallow closets. The drawer we built is a simple 5 mm (~3/16") plywood box constructed without fasteners - only epoxy fillets. I have built many of these; they are simple, light, strong, and cheap. You can add fiberglass, but that is only needed if it is exterior or is a water or fuel tank. The runners are plastic angle left over from a garden shed! The handles are comfortably worn dock line.

The other key items were a simple piano hinge, rope handle, and a prop (5/8" hardwood dowel).  With a piano hinge to secure one edge of the lid, it is EASILY folded without cutting the mattress or un-making the bed! I added a rope handle to make getting started easier. Even my daughter can manage. The prop simply rests on the carpeted wall without slipping (it will stay in place underway), and is fixed at the other end by a screw eye in the dowel and a pad eye on the lid. It hangs in a plastic wire clamp (cut open, visible in center of the lid) when not in use. Simplicity!

Because the drawer rides on plastic angle sliders, it moves with a finger's touch. The exterior dimensions are 26 1/8" wide, 19" fore-aft, and 12" deep.

For now added the hinge and prop to the port bunk, but have left off the drawer: my daughter and friends occupy that side and there is enough storage space since there are more cabinets; we use the space underneath her side (port side)  for boogie boards, extra cushions for the salon, scooters, and other over size toys.

The hammock on the left hangs from brackets that hang off the nuts mounting the Genoa track. We generally use it for dirty laundry. We tried using the "hamper" under the seat, but we learned that the smell after even one day, sealed up in the summer heat, was far to much.

After-install tip: I always forget something.  There is no room for the prop when the lid is lowered. I went back and cut a scoop out of the aft edge of the box just right of the mid-point to accommodate the prop in it's stowed position.

Saturday, November 28, 2009

There is more to life than sailing... or the Artist in the Family has a show.

Gale warning have been up for the past few days, as autumn arrives for real, which means... raking leaves. It also is time to look around the yard to see what is wanting for attention.

A year ago we had to take a few large trees out. One of them ended up as a totem pole, courtesy of my father's talents. Though we share some small bit of Native American blood, it is not from a tribe that practiced this tradition. Still, it seemed worthwhile, and he worked a few family images into the project.

First we experimented and produced a fine guard for my daughter's backyard fort. Fun.

Then my Dad got involved and crafted this 25-foot totem. More fun. It turns out, after much research that the National Parks Department learned that high-copper paint would be the proper environmentally acceptable preservative for the base. They had it specially formulated. I gather they had never heard of bottom paint. Before the bottom paint they suggested soaking the base in a borax/glycol mixture, which we prepared by dissolving about 2-3 pounds of borax in 1 gallon of ethylene glycol (concentrate antifreeze would work) at about 200F (heated on the stove). Several coats soaked in over 2 days did a fine job; as of 5-1-2015 there is not trace of rot. The glycol mix, after drying for a week, did not reject the paint.



Ken Frye - Watercolorist

But there is a point to this rambling discussion. My Dad opened a gallery show in Vienna, Virginia today. He's been painting and selling water colors and prints, generally of ocean and architectural themes, since I was small. Cape May, New Jersey was a favorite location, became a summer home for us, and influenced in no small way my interest in sailing. If you have visited Cape May, are interested in maritime scenery, or simply appreciate art, give my Dad's blog a gander.

http://kenfrye-artist.blogspot.com/

http://www.ayrhillgallery.com/news-events.html

Tired of splicing? Substitue an 85% Strength Knot.

There are circumstances when a splice cannot be beat: chain to rope splice, spinnaker sheet to shackle or other snag-prone spot, or to the becket of a block where a knot would be too bulky. There are other times when a knot is a better choice: a dingy tackle that is easily tangled and frequently re-rove, a halyard that is prone to jamming in the head block, or a halyard that will be reversed or trimmed for wear. I like them on spinnaker halyards since they provide a big ball for me to hang on to (although I understand that on some rigs they can be snag prone at the mast head - it is all a mater of geometry). Many times a simple bowline will do the job; it is easily untied and compact. It is also a mere 45% strength knot and can come loose if tied loosely or with a too-short tail.

Standard figure-8
A common figure-8 is an 75% strength knot that is bulkier and more difficult to untie. It is, however, the gold-standard for mountaineers, and they stake their lives on its security and dependability. Even after a good hard fall it is not too difficult to untie, though saltwater and time do seem to make this more difficult.

Figure-8, Yosemite finish
The figure-8 can be improved upon; take the tail around the standing part again and feed it through the first turn. This increases the strength, makes it more secure against working loose, and makes it easier to untie. Three for one!

This has become my favorite mountaineering tie-in, and I have tested it through more than a few falls, as well as failure-testing it against both splices and standard figure-8s. It is less than line strength, but not by very much.

But what about chafe? A thimble won't work, but there is another solution, well proven on industrial lifting slings and used on my boat for 15 years: cover the wear area - the thimble location - with nylon or polyester tubular webbing. 1inch webbing for line up to 1/2-inch (12 mm) and 2-inch webbing for larger line; a 3-6-inch length will do. The webbing will move with the sharp spots and rope will only feel nylon sliding on nylon, it will protecting this critical area from sun, and eliminate all wear. I believe it out-performs a thimble in many applications and is certainly a safer choice for the beginning splicer, where the thimble many not be as securely positioned as needed and can shift. I have used tubular webbing "thimbles" on mooring lines and high-tec halyards, and the knot or thimble has never been the failure point.

Thursday, November 26, 2009

Circumnavigating the Delmarva Peninsula — A Guide for the Shoal Draft Sailor: November 2009 Revisions

     With the passage of one of the strongest northeasters in many years, the changeable inlets of the Eastern Shore have done just what they naturally do in response to stress; they have changed. After a few conversations with some fisherman and one sailor heading south for the winter, I have a few revisions to offer:

     Additionally, I have revised and expanded some Delaware Bay information between the Cohansey River and Bidwell Creek on the Jersey side.

Enjoy!








Tuesday, November 17, 2009

The Purpose of Work

An American businessman was at the pier of a small South Pacific island village when a small proa with just one fisherman docked. Inside the small proa was a dorado and several large grouper. The American complimented the Islander on the quality of his fish and asked how long it took to catch them.

The Islander replied, "Only a little while."

The American then asked why didn't he stay out longer and catch more fish?

The Islander said he had enough to support his family's immediate needs.

The American then asked, "But what do you do with the rest of your time?"

The fisherman said, "I sleep late, fish a little, play with my children, take a late afternoon nap with my wife, Helia, and then in the evening after dinner I stroll into the village where I sip rum and play guitar with my friends. I have a full and busy life."

The American scoffed, "I am a Harvard MBA and can help you. You should spend more time fishing and with the proceeds, buy a bigger boat. With the proceeds from the bigger boat you could buy several boats; eventually you would have a fleet of fishing boats. Instead of selling your catch to a middleman you would sell directly to the processor, and soon you would open your own cannery. You would control the production, processing, and distribution. Of course, you would need to leave this small fishing village and move to Australia, then Los Angeles and eventually New York City, from where you could better run your expanding enterprise."

The South Seas fisherman asked, "But, how long will this all take?" to which the American replied, "15–20 years."

"But what then?"

The American laughed and said "that's the best part. When the time is right you would announce an IPO and sell your company stock to the public and become very rich. You would make millions."

"Millions, really? Then what?"


The American said, "Then you retire. Move to a small fishing village where you sleep late, fish a little, play with your grandkids, take a late afternoon nap with your wife, and then in the evening after dinner, stroll into the village to sip rum and play your guitar with your friends."


Borrowed. I have no idea where this came from; I have seen many versions on the net and edited this one to suit my sense of story telling.

Monday, November 16, 2009

Anchor and Bow Details

rev. 2-15-2010. rev. 7-21-2024

Chain  can beat up the deck between the roller and the windlass.Solutions include wood, plastic, and in my case, heavy duty non-skid from the roller to windlass.

I've seen all sorts of lashings holding anchors while underway. A simple pin through the chain works very well and is FAST to release. Mine is home-made from 3/16-inch aluminum, but I believe you can buy them. I would not call this a chain lock - it won't take the strain - but it works better with mixed chain/fiber rodes than available chain locks because it is out of the way when open and permits easy man-hauling when needed. With a fiber rode you snub the rode on a cleat, anyway.

In my case, I always use a bridle and the rode is not loaded. With a catamaran the rode would suffer serious abuse and chafe due to exiting the the bow roller at a 40-60 degree angle. To protect the bridle I use 2-inch tubular climbing webbing (http://www.rei.com/product/472049) where it crosses the bow chock.

In the picture we have stopped for a swim in fine weather. In serious weather or when we leave the boat for a time, the rode would be cleated-off, as a back-up.

 

Note: A first I used a 316 stainless pin for the lock. It was pretty and shiny. Stainless is weak, the windlass bent the pin, and it jammed on me one night in close quarters. Enough of that .

 I replaced it with an old screwdriver. I cut off the blade and drilled a hole through the shaft for the retaining pin. Much stronger, and now there was a handle to hold on to, making it easier to tug it out if there was a little weight on the chain. It rusted a little, but the screw driver had a nickle plating that held up well.

 This photo was taken before I converted to all-chain rode. Also, I was using a short polyester bridle made from double braid dockline at the time. After I switched to all chain, the ride on the polyester bridle was noticeably rough, and that is when I began investigating snubbers and shock absorption. With a nylon rode the ride was fine, but the windlass would not recover rope very well and not reliably under any tension. It also liked to jam on the rope-to-chain splice. That was before I discovered the Irony Splice

Corner Tramp Lacing Reinforcement on PDQ 32


I've noticed that many of these boats have a problem with the bolt rope being strained in the corner, bringing a premature death to the trampoline. There is not enough lacing support and this is a high-impact area, due to sailors stepping down off the cabin roof. A few extra laces are just the ticket: simply add 3 small stainless straps (1" x 1/8" x 2" 316 SS) with a 1/4-inch hole drilled in each end. Round the holes well to avoid chafe.

Friday, November 13, 2009

A Marine Winterizing, Antifreeze, and Engine Coolant Primer

rev 3-2-2010
rev. 12-16-2015
rev. 9-20-2016

Protecting marine water systems from ice damage is the simplest of aims, but the terms and product claims are confusing. A little education goes a long way. Yup, you can blow the system out with air or drain it; that is not the topic I am speaking to today.

Toxicity
For the potable water systems on a boat there is only one reasonable alternative: propylene glycol (PG), the active ingredient in virtually all marine and RV antifreeze products. Identified by the FDA as “generally recognized as safe” it has very low toxicity to people and mammals and no identified long-term health effects at modest doses. It can be used in toothpaste and foods; over 1 pint/170 pounds is required to be fatal. Ethylene glycol (EG), commonly used in automotive engine coolant, is toxic to people and mammals when ingested; less than ½ cup per 170 pounds is expected to be fatal. Neither is carcinogenic or causes any adverse health effects at incidental exposure levels. Both glycols have a sweet taste. Material Safety Data Sheets (MSDS) are a convenient source of information, widely available on the internet.
Marine toxicity is a different matter; both ethylene glycol and propylene glycol are low in toxicity, and there is no established difference between for fish, crabs, or marine grass. Toxic effects require 4-20% of either glycol—levels which cannot be approached with small spills because of immediate dilution.  Biodegradability is also equal; both are as easily degraded as food wastes. Claims that propylene glycol is more biodegradable or friendly to the marine environment are offered without relevant basis or back-up; we have searched high and low—the research says they are the same. See http://www.riskworld.com/Abstract/1996/sraeurop/ab6ad040.htm and MSDS information.Thus, for engine and head antifreeze, there is no strong reason to prefer PG over EG.

http://www.sciencelab.com/msds.php?msdsId=9927239 EG MSDS

http://www.sciencelab.com/msds.php?msdsId=9927167 PG MSDS

Glycerin has been suggested as a natural glycol substitute: don’t do it. It is a poor antifreeze agent, is more difficult to rinse off, does not dry, and gets very thick in cold weather. Glycerine is also more toxic than generally understood; better than ethylene glycol, but twice that of propylene glycol. Drugstore glycerine bottles now carry a warning against excessive use on baby's skin. Not all "natural" products are safe.
  • Ethylene glycol, rat oral, 4,700 mg/kg
  • Glycerine, rat, oral, 12,600 mg/kg
  • Proplyene glycol, rat oral, 25,000 mg/kg 

Unavoidably, some glycol will find its way back into the water after launching. Try to minimize this loss; both are pollutants and both lower dissolved oxygen levels when they degrade. 


Why does this matter?

Compatibility
            Not all materials like polypropylene glycol. The rubber parts (neoprene) in water pumps (impellers) and heads (joker valves and o-rings) are stiffened by PG. Even worse, some plastics, notably polyamide (nylon) strainers can craze and fail. The strainer below was ruined in just two seasons. Because it is in the fresh water system where I must use PG for safety, I now simply leave it out for the winter, but I cringe at the materials I don't know about. However, it is this sort of materials compatibility issues that has completely blocked PG from OEM engine coolants. You can buy them in the aftermarket, sold under the false claim that they are better for the environment. However, they are not good for the car and using them is a risk.


Burst Point
A fuzzy term without ASTM or other industry accepted standard test. It is generally recognized as the temperature where the entire mixture has become solid, though expansion may begin before this. Strong and tough materials (steel pipe) resist the strain of expanding ice better than weak and brittle materials (cast iron and PVC), and yet manufacturers of RV antifreeze seem to be “optimistic” when compared to major glycol producers’ data.
The freeze point has an ASTM recognized definition and test method; it is the temperature where the first ice crystals form. Automobiles and any system that is to be operated in cold temperatures must be protected to the freeze point to insure reliable pumping with no ice crystal present. 
As for those materials that claim -100F or -200F burst point material, there is no science to support it; all EG and PG mixtures freeze solid before -65F is reached. This is lying, plain and simple; notice that DOW does not make such silly claims. Educated industrial buyers know better.
Another word of caution for those that would use the minimum amount; when antifreeze is subjected to freeze/thaw cycling, the ice crystals float, and the glycol rich solution sinks. There will be some separation, and the burst point at the top of a complex pipe system can be much greater that the predicted value. This is common in large, complex piping systems.
Fermentation is a concern if less than 25% (that -50F burst point stuff) is used. With just a few bacteria or yeast and a little warm weather before launching, weak glycol can turn into a repulsive mixture, reminiscent of a half bottle of Thunderbird found under the seat of a used car. Sailors complain about the taste the glycol leaves behind--most often it is the fermentation products they are tasting, not the glycol. Fermented glycol also becomes very acidic and corrosive, with a pH of <5 .="" 25="" air="" alcohol="" an="" and="" as="" been="" brandy="" by="" commercial-scale="" conditioning="" dow="" extensively="" fermentation="" has="" if="" important="" in="" inhibited.="" is="" it="" like="" others="" over="" p="" problem="" studied="" systems.="" this="" used="">

The glycol content of a product is best measured with a refractometer calibrated for the glycol used. Most can test EG, PG, and battery acid—very handy—and are available for about $50. No mechanic should be without one. Glycol content is also listed on manufacturer supplied MSDS sheets, though it is conspicuously absent from packaging labels. Very curious indeed. Please note the price information below is VERY market dependent. Winter 2008 was high, Winter 2009 is much lower and I have not up-dated the table.

                                                Vol. %                   
                                                Propylene    Freeze    Burst  Price (2008)
Product                                  Glycol           Point, F   Point, F    $/lb PG
***Camco Ban Frost 2000     97                  -60           -60         $1.85
Camco Freeze Ban -100          64                  -63           -63         $1.89
Camco Freeze Ban -50            32                    5            -25         $3.84
*Star-brite -200 RV / Marine  97                   -60          -45         drums only                  
Star-brite -100 RV / Marine    60                   -60          -60         $2.45
Star-brite -60 RV / Marine      32                    5            -25         $2.49
Star-brite -50 RV / Marine      25                   10            0            $2.37
Sea-farer -50 Marine               25                   10            0            $1.90

* Concentrate. Use at 30-60% to get freeze point of -10F to -60F.
* * Product names do not always match always burst point claims, as determined from MSDS glycol concentrations and test data.
***For engine use only. Not for potable water systems. Like EG engine coolants it contains corrosion inhibitors with some toxicity.

Engine Coolant
Most RV (propylene glycol) antifreeze products are not designed for use in operating engines, and they are not optimized for corrosion protection. They contain only small amounts of corrosion inhibitors, and not the additives required in engine coolants; those additives are too toxic for potable water systems. There is no such thing as a “marine” engine coolant, in the sense that it is formulated specifically for or is better for marine applications; automobile and truck manufacturers have research this subject since the beginning of engines, and you should chose according to the engine type you have:

Gasoline or light-duty (not wet sleeve liners) diesel engine
PG or EG engine coolant                    *  Long-life type, 5 yr., typically yellow or red.
                                                              *  Conventional type, typically green.

Heavy-duty (wet sleeve liners) diesel engine
PG or EG engine coolant                    *  Long-life type, 5 yr., typically yellow or red.
                                                             *  Conventional type, typically green or pink.
                                                      Both must be rated for diesel (heavy duty) use. Some contain an SCA pre-charge of nitrite, while many of the newer formulations are nitrite-free. Nitrite-free has certain advantages for road use (nitrite can form ammonia in situ in certain brazed aluminum heat exchangers) but this makes little difference in marine engines.

Change interval. The coolant interval ratings are stated above. However, in marine applications the conventional wisdom is to change the coolant every 2 years, because of the risk of seawater contamination (0.2% is the condemning limit based upon chloride) due to heat exchanger internal leakage. Seawater is about 25,000 ppm chloride, and is also high in sufate and hardness.

(water requirements from ASTM D3306)
Contaminatant in Water                     Maximum PPM
Chloride                                                  25             
Sulfate                                                     50             
Hardness                                                 20             

   
Disposal
(I designed and built this plant in 1995. Chemical engineer by training.))
Recycling is always best, and because of the high value of glycols, used antifreeze has a value to recyclers. Both propylene and ethylene glycol are recyclable, and they can be commingled in collection tanks at your marina, county collection center, or service station. The best recyclers distil the spent antifreeze under vacuum and produce glycols and coolant products meeting all virgin engine coolant specifications; much of the recycled product finds its way back into the cars you drive as factory fill!

Bottom Line
  • Buy antifreeze by the pound of glycol. In 2008, Camco -100 for water systems and Camco Ban Frost 2000 for engines are the best deals; several others are very close, but Camco -100 has the safety factor to handle water left behind.
  • If your engine has a glycol cooling system, buy at the auto or truck parts store, either EG or PG. Long-life formulas are cheaper over time, though they should not generally be mixed with or used to replace conventional green antifreeze; there can be compatibility problems. The new “global” or universal” products have solved most of these issue. However, remember diesels should get diesel engine coolants; that peculiar diesel rattle produces vibrations and cavitation corrosion that automotive coolants cannot protect against.
  • Be wary of skimping; freeze/thaw cycling separates glycol/water mixtures and can cause bursting of complex systems and horrible fermentation problems. Be cautious with weaker products if there is any water remaining in the system. PG concentrations in the system of less than 34% are questionable at low very temperatures—the burst point curve is very steep in that range.

Tuesday, November 10, 2009

Removing and Replacing the Engines in a PDQ 32

 I wanted to choose a humorous title, but there just wasn't enough humor in the topic to pull it off. Or as I am fond of saying in unpleasant straights, "all's well that ends."
 
I recall the first engine troubles I had on my PDQ; just shortly after our delivery trip home the starboard engine would refuse to start. It would run just fine on ether, so it was clear it was getting no fuel. It wasn’t the fuel pump — enough was coming out the hose. I replaced the pump with a spare anyway, just to be certain and because it was easy to get to. Soon enough, after a few conversations with others, it became clear it was the carburetor, and the carburetor is just plain tough to get to on the starboard engine. I was sure I needed to pull the engine to see what was going on. Thankfully, a wise old PDQ sailor, Page83, came to the rescue with a manual and with the help of the manual I found it was actually quite simple to pull the barb off, after which cleaning and re-building it on the bench is a snap. No fuel injection, no computers. I grew up on old cars in the 70s and so it all looked familiar - just like my 76' Pacer. I hesitate admitting to that choice, but a college kid will buy anything that has reasonable milage, is cheap, and runs. Actually, the profile resembled the PDQ 32. Every so often I read of a PDQ sailor that is going to pull and engine to work on something minor, like like a carburetor cleaning. Please don’t. It's not that much fun.

During our last Delmarva trip I noticed that the starboard engine was beginning to drink oil. Where previously a few ounces would last a year, now a pint would last only a few hours, and eventually, perhaps only 20 minutes. While I was considering my options, it seized. Later investigation revealed that it did not seize in the sense that metal welded to metal; I think the combustion chamber somehow filled with oil, preventing the piston from going up (I found the intake manifold and carburetor full of oil during tear down. After draining, it turned easily). At the same time, the port engine stopped cooling. Oh, a very small portion of water was getting by, enough to just prevent overheating in cooler weather, but not enough to be safe. Because the pump had perhaps never been serviced, the lower casing refused to separate easily, or not even with heavy persuasion. 
 
Both engines had failed at the same time.

As luck would have it, Page83 had a pair of Yamaha 9.9 engines that he had swapped out in favor of 8 hp engines with power tilt. The Yamaha tilt system on the PDQs is always a sore spot with the owners, and must finally have exceeded his tolerance. Or perhaps his wallet was just heavy enough to tip the balance in favor of ease. Either way, I became the owner of a “new” pair of moderate hour Yamaha 9.9s. After a few evenings of tuning, maintenance, and minor part replacement, they were purring in a 55-gallon drum.  Of course, they were only beside my house instead of Page83’s house; they were not in the boat. 
 
Enough rambling over how the situation evolved. Down to details. 
 
Pulling the Old Engines 
 
I considered dropping them out on dry land. I gave that up for a number of reasons: I had just painted the bottom with 2-year paint in August and had no other reason to haul; it seemed to me that the hole in the bottom was not quite large enough to drop the engine through—close, but not quite; several owners have described hoisting them up. In fact, it was a reasonable 1-person job. Putting them back in with 2 people was better, but could have been managed by one person with a little more time. no step was strenuous or required 2 people.
 
Would I haul the boat and do it on dry land, given the choice?  No, I don't think so. It wouldn't be easier; it would be different. I think it was easier sliding them onto the dock than it would have been lowering them. It would have been nice to get under neither once or twice. Either way.
* Duct tape over the drain hole in front of the mounts. Bolts and tools are strongly attracted. 
* Bring lots of old quilts for padding the boat! There it no slamming involved, but there is much scraping potential. 
* Knee pads are a must. There is a lot of time spent leaning into the well to reach things. 
* Disconnect the starter, charging, and control wires. A prudent person would take the positive cables off the batteries. A cautious person will merely be very careful not to touch black to red while disconnecting. It may only be 12 volts, but the amps are nearly unlimited.
* Disconnect the gasoline line. I my case I had to remove a Raycor fuel filter just forward of the engines.
* Disconnect the shift and throttle cables. The linkage ends are simple slide-clips. A single bolt (10 mm wrench) underneath the clamp where they enter the engine, where you can’t see it, is all that secures them to the engine. There is a rubber grommet - I slit it from underneath with a knife and removed it that way. There is a grove at the end of the cable that fits in a pair of slots next to the 10 mm bolt. If there is not enough slack to pull the cables out, don’t force them - they will come out easily enough when the motor is lifted a few inches. The only real reason to get them out now is to provide better access to the transom clamps.
* Disconnect the tilt lock lever extension. 4mm allen wrench.
* Loosen the transom clamps. In my case this step took about 2 hours of painful work for the first engine, including lubricating the bolts several weeks beforehand. There is little space to work and no wrench fits those stupid little plastic handles. It required the use of vise grips and 2 different small pipe wrenches, each one specializing in one a small arc of a full revolution. I have been told that a self adjusting socket (Sears Gator Grip http://www.sears.com/shc/s/p_10153_12605_00947078000P?vName=Tools&keyword=socket+pin or Gemplers Self-Adjusting sockets http://www.gemplers.com/product/134214/5-pc-Universal-Self-adjusting-Master-Socket-Kit) will do the job; the plastic handles will need to be removed first.  PB Blaster (penetrating oil available at most parts stores) is also a HUGE help. I discovered it just in time for the second engine. Just as tight as the first; after giving the PB Blaster 60 minutes to work and a few tough turns... I could turn the clamps with my fingers!
* Remove engine cowling and install a light chain lifting bridle to the flywheel. Three short 8M bolts are required.
* Position two 2x6 planks across the hard top with one end above the skylight and one hanging over the back. Lash them together, but not too tightly; you want to be able to reposition the tackle by sliding it (unloaded, of course). This will create a fore-aft adjustable mounting for your tackle. No, they do not need to be this large for strength, but it does help spread the load. (see photo below)
* Attach a 3:1 tackle between the engine and the planks, connected to the genoa winch. I used the port winch for both engines, since it is less crowded than the starboard side. You must winch through the genoa turning block to insure a good lead angle to the winch. By the way, the tackle is not needed for power; it helps slow the lifting, reduces the stress on the hardtop (140 pounds vs 220 pounds) and reduces the side pull on the planks. 
* Try to minimize the stack height of the tackle and bridle so that the motor will lift clear; measure the lifting range and compare it to the length of the motor from transom lip to skeg.
* Crank away. Be aware that the winch, with a 3:1 tackle, has enough power to break the hardtop in half. Don’t force it! Be warned that the transom bolts may be driven into the mounting; rock it loose by hand and without the winch first. Any time you feel any resistance through the winch, look to see what has caught. You will start and stop many times and go up and down a few times if working alone.
* There are some clearance issues. You will need to rock the lower end to the outboard side as it comes up through the hole. Be very careful with the carburetor and the ignition wiring panels. A second person underneath would be helpful, but it is not too bad from above.
* Disconnect the engine tilt line as it comes into reach. 
* Once clear of the well, set the skeg on the seat behind the well, disconnect the
tackle,and lift/slide/boost the engine up onto the padded aft cabin roof.

Engine Mount Repair
It seems PDQ could have put a few more layers of glass into this area. On both of my mounts the transom clamps had punched in about ¼-inch. This results in water getting into the core, necessitating repair. Additionally, it allows the motor to rise a bit during hard reverse, increasing the chance of sucking a lifting line into the prop (I'm guessing that the mount damage actually occurred when the hold down latch failed, allowing the line to wrap into the prop and placing a huge strain on the bolts, something they only see in reverse). The previous owner had made some ineffective repairs with Marine-Tex or something similar. The aft surface of the mounts were fine—the force is distributed over a much larger area.

A permanent repair is a simple matter of epoxying a section of ¼” pre-laminated FRP to the damaged surface using thickened epoxy. Grind everything down smooth, fill the holes, slather on a nice thick layer, and clamp it down to cure. Easy and much better than new, I think. Do confirm the maximum clamping range of your engines; This repair took me to within 1/8-inch of the maximum. If I ever need to do something with the aft surface of the mount in the future, I will need to grind off some glass and go in with something stronger instead of something thicker.



Getting Engines on and off the Boat at Dock

A piece of cake, as it turns out. A single section of an extension ladder with a piece of plywood fitted between the rails makes a nice gangplank with rails such that the engine cannot slide off into the briny.
* Secure the plywood to the rungs (a few holes with cable ties).
* Lash the ladder to the rear railing openings. It works best if you extend the ladder on-board until it touches the aft cabin roof; pad all of the contact points well. With enough padding, it is simple to spin the engine so that it goes prop first to the ladder, and then slides down the ramp. Pull it with a rope around the prop, as needed. Be careful, but the ladder rails should do a good job of keeping it centered.

Because getting the engines on-board was up-hill, we used a winch with a turning block extended from the aft hard top support. Take the cowling off the engine and use the chain lifting bridle to bring the engine up head first (to prevent the oil from going places it shouldn’t). Easy. Again, always lots of padding.


Installing the Engine

Much like pulling the engine, only more delicate… but you can see where the connections are better this time! I will discuss only those steps that are different.

* Remember to reconnect the engine lifting line! I forgot on the port engine until it was too far in to turn back. I ended up going for a swim to get it reattached. In the Chesapeake Bay in November this is not a lot of fun, but with a wet suit it wasn't really bad - just those first few moments as the water filled the suit. I have also done this from a tender before—swimming with a wet suit in 55 degree water was better than that torture. Fortunately, the water in my slip is only ~ 4 ½ feet deep, so it is more wading that swimming. 
* You may need to insert the shift linkages while still a 2-6 inches above the mounts. It was different on each side. However, do not attempt to attach the cables until the motors are clamped in place.
* Lube the shift and throttle cables, while you’re at it. IF you are replacing them at the same time, there are some tips here.
* The cables may require adjustment for proper operation; mine were perfect the first time. There are threads on the end for this purpose. Take a good look at them while the engine is out, so that you understand the operation.
* Use lots of anti-seize on the transom clamp bolts! No-Alox is my favorite for aluminum joints (see comments below).
* Clean all of the power cable connections completely with emery cloth; not just the ring you removed, but the entire stack. Coat with heavy terminal grease (any auto parts store), or better, No-Alox by Ideal . It is a corrosion preventative for cable connections (synthetic grease with zinc dust), specifically for aluminum wiring, but applicable to tin and copper as well. Waterproof grease is not as good in this application.  I have tested these products in a heated salt environment chamber, alongside both grease and aerosol products for a year for a sailing magazine article, and they were the winners. High resistance connections are the leading cause of cars and boats failing to start, right behind dead batteries and empty tanks!
 
Go sailing! You have earned it.